Prescribing Contact Lens Solutions: Making Informed Decisions

William D. Townsend, OD. FAAO
Advanced Eye Care Canyon, TX
Adjunct Professor, UHCO Houston, TX

drbilltownsend@gmail.com

Financial Disclosure
William D. Townsend, O.D., F.A.A.O.
• William D. Townsend OD has received honorarium from Alcon, Allergan, CIBA, Cooper Vision, Odyssey Medical, and VSP. He is not on the board of any ophthalmic drug or contact company

2010-Contact Lens Dynamics in US Market

Why do patients drop out of CL’s?

<table>
<thead>
<tr>
<th>Reason</th>
<th>Soft</th>
<th>RGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discomfort</td>
<td>40%</td>
<td>58%</td>
</tr>
<tr>
<td>Dry eye symptoms</td>
<td>10%</td>
<td>11%</td>
</tr>
<tr>
<td>Red eye symptoms</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Insertion/removal</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Poor vision</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>Advised by doctor</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Other (cost, presbyopia, photophobia, no answer)</td>
<td>23%</td>
<td>11%</td>
</tr>
</tbody>
</table>

When patients present with contact lens-associated discomfort.......
• Change the fit
• Change the material- (wetter)
• Change the brand
• Add re-wetting drops
• Try punctal plugs
• Evaluate for solution-related complications, compatibility

Disclaimer
William D. Townsend, O.D., F.A.A.O.
• As a paid speaker I have been sponsored by several companies including Alcon, Allergan, CIBA, Cooper Vision, Odyssey Medical, and VSP.
• I am not a consultant to nor an employee of any pharmaceutical or industry company.
• Any product superiority mentioned during this presentation will be supported by scientific studies and white papers.
Why patients drop out

- Vision
 - Presbyopia inadequately corrected
 - Dryness
 - Poor lens surface quality
- Convenience—should not be an issue
- Comfort #1
 - Poor fit
 - Dryness (actual or perceived)
 - Loss of surface conditioning
 - Coated lens surfaces
 - Solution allergy
 - Solution toxicity

Our goal today is..........

- Identify solutions problems unique to hydrogel lens “groups”
- Identify solutions problems unique to silicone hydrogel lenses
- Review known adverse interactions between lens materials and solutions
- Empower you with a scheme for evaluating future CL solutions and drops
- Lower the rate of CL dropouts your practice

Milestones in CL Solutions, Materials

- Soft lenses introduced—1971 Bausch & Lomb
- Heat disinfection—1971
- Thimerosal—1977 Flexsol & Flexcare BP/Alcon
 - High rate of allergy
- Chlorhexidine—SoftMate Disinfecting Solution BH
- New generation solutions—1980’s lower toxicity
- Old solutions not necessarily compatible with new materials
- New solutions may not be compatible with old materials

Crucial Issues in Choosing CL Solutions—What Patients Want

- Comfort
- Convenience
- Cost
- Confidence
- Compliance
 - What did the doctor or tech tell them?

2010: Great expectations from multipurpose contact lens solutions?

- Kill bacteria, viruses, fungi, amoeba
- No rubbing required
- Compatibility with tear pH, osmolarity
- Compatibility with all CL materials
- Stability over life of the container
- Wet and condition the lens surface
- Enhance comfort of CL wear
- Affordability

Crucial Issues in Prescribing CL Solutions—What Doctors Want

- Eye-Solution compatibility
- Lens-Solution compatibility
- Lens-Surface wettability
 - HAPPY PATIENTS who continue to wear contacts and support your practice
Improving Lens Comfort

Are There Differences Between MPS Products?

COMFORT Influenced by: Wettability + Cleanliness + Compatibility

- Lasting surface wettability
- Dynamic wettability test over time
- Absence of pathogens, debris and protein
- Minimize ocular stress
- Disinfection testing
- Lysozyme removal
- Corneal staining

Factors that influence informed solution prescribing decisions

- Lens material: water content, ionic vs non-ionic, silicone hydrogel vs hydrogel
- Use: daily vs. extended vs. flexible wear
- Protein coating/uptake characteristics
 - Hydrogel vs. silicone hydrogel
 - Location, depth, and denaturing
- Patient history
 - Infection, keratitis
 - Allergy
 - GPC
 - Other
- Physical exam

Making informed decisions: we do it all the time!

- 48 yo male with large internal hordeolum
- HIV positive with T-cell count of 120
- No prescription drug coverage w/ insurance
- What is your decision making process?
 - I need a bactericidal drug.
 - I need a drug w/ good gram+ coverage.
 - I need a drug w/low incidence of resistance.
 - I need a generic drug to keep cost down.
- Your solution is to prescribe........
 - Augmentin 875 mg Q 12 hours!

But how do we make informed decisions in prescribing CL solutions?

<table>
<thead>
<tr>
<th>Hydrogel Lens Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created in 1986 for solution companies</td>
</tr>
<tr>
<td>Categorized “for purposes of evaluating effects of accessory products on the lens materials”</td>
</tr>
<tr>
<td>Based on water content and ionic charge</td>
</tr>
<tr>
<td>“Low water”- less than 50 % water content</td>
</tr>
<tr>
<td>“High water”- all others</td>
</tr>
<tr>
<td>“Ionic”- (highly charged) materials</td>
</tr>
<tr>
<td>“Non-ionic”- (low charge) surfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2 Lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydranate</td>
</tr>
<tr>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Polyquad</td>
</tr>
<tr>
<td>Group 2 Lenses</td>
</tr>
<tr>
<td>Tetronic 1304</td>
</tr>
<tr>
<td>Citrate</td>
</tr>
<tr>
<td>Edetate disodium</td>
</tr>
<tr>
<td>Povidone</td>
</tr>
<tr>
<td>Tetronic 1107</td>
</tr>
<tr>
<td>Dymed</td>
</tr>
<tr>
<td>Poloxamine</td>
</tr>
<tr>
<td>Alexidine</td>
</tr>
</tbody>
</table>
Contact Lens Materials Groups

<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
<th>GROUP 3</th>
<th>GROUP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Water (<50% H₂O)</td>
<td>High Water (>50% H₂O)</td>
<td>Low Water (<50% H₂O)</td>
<td>High Water (>50% H₂O)</td>
</tr>
<tr>
<td>Non-ionic Polymers</td>
<td>Non-ionic Polymers</td>
<td>Ionic Polymers</td>
<td>Ionic Polymers</td>
</tr>
<tr>
<td>Cibavision Preference</td>
<td>Gold Medalist Toric</td>
<td>Soflens 66 Proclear</td>
<td>Hydrocurve II 45</td>
</tr>
<tr>
<td>Softens</td>
<td>Soft Mate B</td>
<td>Durassoft 2</td>
<td>Acuvue sphere</td>
</tr>
<tr>
<td>Focus Dailies</td>
<td>Focus monthly</td>
<td>Focus Toric</td>
<td>Acuvue Advance</td>
</tr>
<tr>
<td>Focus Night/ Day</td>
<td>PureVision</td>
<td>Biomedics Toric</td>
<td>PureVision</td>
</tr>
<tr>
<td>Silicone hydrogels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrogel vs. Silicone Hydrogel Lens

- **O₂ Permeability**
 - Increased H₂O content HG = increased O₂
 - Increased H₂O content SiHG = decreased O₂
- **Lipid coating**
 - Rare in hydrogels
 - Very common in silicone hydrogels - must rub!
- **Protein coating**
 - Hydrogels - minimal denaturing
 - Silicone hydrogels - extensive denaturing
- **Matrix absorption of preservative a factor?**
 - Hydrogel - yes
 - Silicone hydrogel - no

What goes into a CL solution?

- **Water** (actually, really good water)
- **Electrolytes**
- **Cushioning agents**
- **Chelating agents**
- **Preservatives / Disinfectant**
- **Buffering agents**
- **Cleaning agents**
- **Wetting / Conditioning agents**

Early Preservatives

- **Thimerosal**
 - Mercurial compounds
 - Allergies
- **Benzalkonium Chloride (BAK)**
 - Cationic detergent
 - Affects lens wettability & tear film stability
 - Concentrates in lens matrix, released later
 - Causes toxic keratitis
- **Chlorhexidine**
 - Biguanide germicidal agent
 - Less sensitization than thimerosal, but toxic to epithelium
- **Sorbic Acid** - discolors lenses

21st Century Preservatives

- **Aldox** (myristamidopropyl dimethylamine) Small MW ~ 300
 - Anti-fungal activity
 - Acanthamoebicidal activity
 - Anti-bacterial activity
- **Alexidine** Small MW ~ 500
 - Biguanide used in dentistry since mid '70's
 - Causes cell lysis by interference with the layer phospholipid of the microorganism’s cytoplasmic membrane
- **Polyhexamethylene biguanide (PHMB)** Medium MW ~ 800
 - Biguanide class (includes chlorhexidine)
 - Anti-microbial efficacy
 - Cytotoxic reactions dependent on concentration
- **Polyquad** (polyquaternium-1) Large MW ~ 8,000
 - Reduced cytotoxicity
 - Potent bactericide
 - Large molecule reduces absorption
Why patients (and doctors) are confused

- FDA “stand alone criteria”
 - After inoculation, solution must show:
 - Three log units of kill for bacteria
 - One log unit of kill for fungi
- MPS (not stand alone)- cleans, disinfects, rinses, and stores
 - (rubbing required)
- MPDS (stand alone)- same as MPS but higher disinfectant criteria
 - (no rubbing required)

Potential Preservative-Lens-Eye Interactions

- Preservatives may:
 - Adsorb (attract and hold to surface minute particles of mixture or molecules of gas or liquid)
 - Absorb (to take something in through pores on surface and into lens matrix)
 - Be released onto the ocular tissue possibly resulting in a potential cytotoxic response
 - These may occur more frequently with small molecule preservatives
- Prevention of above requires blockage of lens sites to prevent absorption and release

- Two randomized, investigator-masked, 2-month crossover studies
- Study 1- 45 subjects used Opti-Free Express & Complete for 1 month then crossover
- Study 2- 44 subjects used Opti-Free Express and ReNu MultiPlus for 1 month then crossover
- Lenses used:
 - Accuvue 2- group 4
 - Soflens 66- group 2

Strategies to Reduce Ocular Exposure to Cytotoxic Substances

- Use a large MW preservative or molecule with minimal ionization
- Prevent lens adsorption or release of offending chemical
- Provide shielding of lens using a charged molecule (ie. citrate)
- Modify preservative size & charge to reduce adsorption and release

OPTI-FREE EXPRESS MPDS vs. ReNu Multi-Plus
Comfort

\[P = 0.04 \]

\[P = 0.04 \]

OPTI-FREE EXPRESS MPDS vs. Complete MPS
Staining

Lessons to be Learned

- Staining occurs with all preservatives selectively worse in 1st 6 hours of wear
- Polyquad preserved solutions show less staining at 2-4 hours compared to PHMB-preserved solutions
- PHMB staining is proportional to concentration if all other components in solution are the same
 - But they are not!
 - Differences in staining not explained by preservative alone

Preservatives and Anti-microbial Activity?

- Must kill pathogens, especially gram negative (pseudomonas)
- Must kill amoebae
- Must act within hours
- Must have low toxicity to ocular tissue

Dannelly H and Waworuntu R. Effectiveness of Contact lens disinfectants after lens storage. Eye and Contact lens, March 2004

Log Reduction after 8 hours
Buffering Agents in CL Solutions

- Stable lens parameters
 - Acidic pH promotes lens dehydration and steepening (tighter fit of the lens on the cornea);
 - Alkaline pH promotes hydration and flattening (looser fit on the cornea).
- Tear pH affects cleaning efficacy of surfactants

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffering Agents in CL Solutions

- As washing proceeds, the alkalinity or pH drops
- Under acidic (low pH) conditions, cleaning is reduced.
- Buffering agents
 - Stabilize the pH and lens shape
 - Enhance the cleaning attributes of the solution
 - May positively or negatively affect toxicity of disinfectants on the eye

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity

Buffers and Lysozyme Removal

- 90% of tear protein is lysozyme
- Borate-buffered solutions marginally remove lysozyme
- Citrate-buffered solutions maximally remove lysozyme
 - Citrate molecule is negatively charged and pulls protein away from lens surface

Cleaning & Wetting Agents

- Important for removal of surface contaminants
- Can positively or negatively affect surface wettability
- Can be customized to increase lipophilicity and hydrophilicity
Proteins in the Eye

- Every protein in our body has a function.
 - Lysozyme: The main protein found in tears; primarily has antimicrobial activity
- Proteins can be found in two states
 - Native State: natural (folded) state
 - Denatured State: forms deposits which bind to the surface of the lens and cause irritation
 - Can be recognized by immune system as “non-self”
 - Can lead to development of GPC
- Cleaner/conditioner can prevent binding of denatured proteins to hydrogel or silicone hydrogel lenses

Tetronic Block Copolymers

The Tetronic® surfactants are tetra-functional block copolymers based on ethylene oxide and propylene oxide. They function as anti-foaming agents, wetting agents, dispersants, thickeners, and emulsifiers. (BASF literature)

EW Lysozyme Deposit Curve

Acuvue 2 w/ no Solutions

Inter-Patient Variability

Patients coat lenses differently!

OFX vs ReNu Multiplus

(3 Crossover studies combined)
AV-2 DW (after Rub/Rinse & overnight soak)
Hydrogel Considerations
- Hydrogel lenses, particularly high-water types, attract protein
- Mucin and lipid deposits are a little less problematic in hydrogels
- Select a solution that minimizes hydrogel coating with protein
- Select a lens material that has reduced dehydration attributes
 - Proclear 62% water
 - Extreme H₂O 59% water

Where are we headed with lens materials and solutions?
- Silicone hydrogels gaining in market share
- Increasing use as daily wear
- New materials designed for compatibility with these lenses
- Matched lenses materials by labels
 - B&L- Pure Vision with Renu MoistureLoc
 - B&L- Biotrue and Purevision
 - CIBA- Night & Day with AQuify

What about new solutions, old materials?
- 30 patients in 3 diverse geographic locations
- Compared OFX to ReNu MoistureLoc for staining, comfort and wearing time
- Non-masked study, crossover using Accuvue 2 lenses
- Evaluated at entry, 2 weeks, and exit

Crucial Issues in Compatibility
- Which lens material and solutions are compatible?
- Which lens material and solutions are not compatible?
- Is there a source for answering the above questions?
The “Conditioning Concept”

- Lenses out of the blister pack have certain features that are lost after wear
- Maintaining that “conditioned” surface probably helps patient comfort; therefore retention

What Really Happens?

- Bulk water loss from a hydrophilic lens is minimal regardless of intrinsic water content or lens group.
- Drying occurs on the lens surface, but is much more than water loss!
- Changes in lens surface wetting can be measured by wetting angle measurement.
- Surface drying may be related to decreased lubricity and discomfort (Lid Wiper Epitheliopathy).

Hydrophilic versus Hydrophobic

Molecular Orientation at the Contact Lens Surface

AQuify?

- Formulated for use with Ciba’s Focus Night & Day lenses
- Unique formulation allows overnight or 5-minute disinfection (RUB)
- Buffering agents may have advantages over other solutions
- High wetting angle when used with hydrogels and silicone hydrogels
- Good staining profile

Amos C. Performance of a New Multipurpose Solution Used with Silicone Hydrogels. Optician 2004

- Compared staining in Night & Day patients using ReNu MultiPlus and AQuify MPS
- Both preserved with PHMB 0.0001%
- After one month
 - Renu group-24% showed staining
 - AQuify group- no staining
- Why? Concentration of PHMB same
- Formulation is the difference

AQuify

- Good choice for most silicone hydrogels- especially Night & Day
- HydroLock” lubricating system
 - Dexamethasone (ProVitamin B5), a moisturizer
 - Sorbitol, a humectant
- Unique time option
 - 5 minute soak with rub
 - 4 hour soak without rub
- Effectively removes lipid, the “culprit” in silicone hydrogels
Optifree RepleniSH
• Specifically formulated for SiHy compatibility (also hydrogels)
• Excellent wetting angles with hydrogel and SiHy
• Some issues with hypersensitivity not seen in original Optifree Express

CIBA Vision- Clear Care
• One bottle peroxide-based solution
• Bubbling action removes surface contaminants
• Contains Pluronic 17R4 as a cleaning agent
• No conditioning agent!
• Very high wetting angles

Amos: Waterloo Study
• Compared Clear Care with Opti-Free Express patients wearing Night & Day daily wear
• After 1 month
 • 0% of Clear Care had staining
 • 8% of Opti-free had staining

My opinion...
• Hydrogen peroxide systems are safe, easy to use and have virtually no toxicity issues unless put into eye
• One-step systems not effective in killing Acanthamoeba cysts because of rapid neutralization
• Lack any conditioning agent
 • Very high wetting angle
• Great for people with solution allergy

FDA Guidelines
• Recent recalls suggest that present standards, methods not realistic, effective
 • Ciba Aquify recalled November 2005
 • B&L MoistureLoc recalled April 2006
 • AMO Complete recalled May 2007
• All used biguanide-based preservatives
• Need more “real-life” strategies for evaluating contact lens solutions

AMO Complete Recall: The Facts
• 46 patients developed (AK) since January 2005
• 39 of these patients wore soft contact lens
• 21 of the CL wearers reported using Complete
• CDC estimates at least seven times greater risk of AK for those who used Complete
AMO Complete- What happened?

- Acanthamoeba
 - Shape oval to triangular when moving
 - Eukaryote- like us
 - Form cysts when stressed
 - Needs break to enter cornea
 - EPA water standards have changed
 - Water supplies w/ amoebae now OK for consumption

The Future

- Better lens surfaces
- Better understanding of lens surface- solution interaction
- Better ways to prevent & remove deposits
- Better ways to condition lens surfaces
- Better molecules to kill pathogens

New Solutions

- Dual disinfection the new standard
- RevitalEyes
 - Preserved with polyquaternarium and alexidine
- BioTrue
 - Preserved with polyquaternarium and PHMB
 - Addition of hyaluronan

Prescribing Solutions

- Prescribe, Prescribe, Prescribe
- Evaluate lens material characteristics
- Know potential interactions between solutions, materials
- Understand that patients will change solutions unless you educate them!

Conclusion

- No solution works for every patient every time!
- Follow the literature as studies are published
- Be critical of the intent of the authors
- Use lid eversion and fluorescein staining to accurately evaluate your contact lens patients compatibility with solutions
- Always consider solution-related complications or interactions when you are problem solving comfort issues